Varroa destructor en Latinoamérica: una introducción a la biología, ecología y control en la región

Autores/as

  • Giselle Fuentes Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Centro Científico Tecnológico Mar del Plata, CONICET. Centro de Asociación Simple CIC PBA, Mar del Plata, Argentina; Centro de Investigación en Abejas Sociales, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina.
  • Azucena Iglesias Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Centro Científico Tecnológico Mar del Plata, CONICET. Centro de Asociación Simple CIC PBA, Mar del Plata, Argentina; Centro de Investigación en Abejas Sociales, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina.
  • Giulia Mitton Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Centro Científico Tecnológico Mar del Plata, CONICET. Centro de Asociación Simple CIC PBA, Mar del Plata, Argentina; Centro de Investigación en Abejas Sociales, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina.
  • Facundo Ramos Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Centro Científico Tecnológico Mar del Plata, CONICET. Centro de Asociación Simple CIC PBA, Mar del Plata, Argentina; Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT), Mar del Plata, Argentina.
  • Constanza Brasesco Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Centro Científico Tecnológico Mar del Plata, CONICET. Centro de Asociación Simple CIC PBA, Mar del Plata, Argentina; Centro de Investigación en Abejas Sociales, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina.
  • Matias Maggi Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Centro Científico Tecnológico Mar del Plata, CONICET. Centro de Asociación Simple CIC PBA, Mar del Plata, Argentina; Centro de Investigación en Abejas Sociales, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina.

DOI:

https://doi.org/10.52559/eunk.v1i2.30

Palabras clave:

Apis mellifera, abejas africanizadas, acaricidas, Varroa destructor

Resumen

El ectoparásito de Apis mellifera, Varroa destructor, es uno de los principales problemas para la apicultura mundial. La siguiente revisión indaga en investigaciones relacionadas con la parasitosis, con principal hincapié en los estudios llevados a cabo en Latinoamérica. Desde los primeros registros de la parasitosis y hasta la actualidad, se presenta una recopilación de la biología, ecología, virus asociados a Varroa, mecanismos de control con acaricidas de síntesis y resistencia; como así su interacción con los linajes africanos. Finalmente, se integra y discute la relación de los conocimientos en el área con la actividad apícola y los mecanismos actuales de control natural.  

Citas

Acuña San Martín, D.A. (2015). Evaluación del efecto acaricida del aceite esencial de Austrocedrus chilensis sobre hembras adultas de Varroa destructor. Universidad de Concepción, Facultad de Ciencias Veterinarias, Departamento de Patología y Medicina Preventiva, Chillán. http://repositorio.udec.cl/jspui/handle/11594/4072.

Ahumada,M., Marcos, J., & Bañares, G. (2018). Determinación del efecto de tres concentraciones de aceite esencial de Eucalipto para el control ecológico de la Varroasis en colmenas en producción en Los Molles, Región de Valparaíso, Chile. Investigación en Ciencia Animal. Vol 2. No 2.

Anderson, D.L., & Trueman, J.W.H. (2000). Varroa jacobsoni (Acari: Varroidae) is more than one species. Experimental & Applied Acarology 24: 165–189. https://doi. org/10.1023/a:1006456720416.

Allen, M.F., Ball, B.V., White, R.F., & Antoniw, J.F. (1986). The detection of acute paralysis virus in Varroa jacobsoni by the use of a simple ELISA. Journal of Apicultural Research 25: 100–105. DOI: https://doi.org/10.1080/00218839.1986.11100700

Allen-Wardell, G., Bernhardt, P., Bitner, R., Burquez, A., Buchmann, S., Cane, J., Cox, P. A., Dalton, V., Feinsinger, P., Ingram, M., Inouye, D., Jones, C. E., Kennedy, K., Kevan, P., Koopowitz, H., Medellin, R., Medellin-Morales, S., & Nabhan, G. P. (1998). The potential consequences of pollinator declines on the conservation of biodiversity and stability of food crop yields. Conservation Biology, 12(1), 8-17. https://doi.org/10.1046/j.1523-1739.1998.97154.x DOI: https://doi.org/10.1046/j.1523-1739.1998.97154.x

Aldea P., Rodríguez R. (2014). Factors affecting sanitary control of Varroa destructor in Chile. The IV COLOSS Workshop on “Varroa control strategies” in Bled, Slovenia May 22- 23. Abstract book pp. 32

Alipp, A. M. (1995). Detection of Bacillus larvae spores in Argentinian honeys by using a semi-selective medium. Microbiologia (Madrid, Spain), 11(3), 343–350.

Anderson, D.L. (1995). Viruses of Apis cerana and Apis mellifera. In: The Asiatic Bee Hive: Apiculture, Biology, and Role in Sustainable Development in Tropical and Subtropical Asia (ed. P.G. Kevan), 161–170. Cambridge, ON, Canada: Enviroquest, Ltd.

Antúnez, K., Anido, M., Branchiccela, B., Harriet, J., Campa, J., Invernizzi, C., et al. (2015). Seasonal variation of honeybee pathogens and its association with pollen diversity in Uruguay. Microb. Ecol. 70, 522–533 DOI: https://doi.org/10.1007/s00248-015-0594-7

Bailey, L & Ball, B.V. (1991) Honey bee pathology, Second edn. Academic Press, London, UK, p 193. DOI: https://doi.org/10.1016/B978-0-12-073481-8.50006-0

Ball, B.V. (1985). Acute paralysis virus isolates from honeybee colonies infested with Varroa jacobsoni. J Apic Res 24:115–119 DOI: https://doi.org/10.1080/00218839.1985.11100658

Ball, B.V. (1989). Varroa jacobsoni as a virus vector. In: Cavalloro R. (ed.), Present status of varroatosis in Europe and progress in the varroa mite control. Commission of the European Communities, Udine, Italy, pp. 241–244.

Ball, B.V. (1996). Honey bee viruses: a cause for concern. Bee World 77:117–119. DOI: https://doi.org/10.1080/0005772X.1996.11099302

Ball, B.V. & Allen, M.F. (1988). The prevalence of pathogens in honey bee (Apis mellifera) colonies infested with the parasitic mite Varroa jacobsoni. Annals of Applied Biology 113: 237–244. DOI: https://doi.org/10.1111/j.1744-7348.1988.tb03300.x

Beaurepaire, A.L., Krieger, K.J., & Moritz, R.F.A. (2017). Seasonal cycle of inbreeding and recombination of the parasitic mite Varroa destructor in honeybee colonies and its implications for the selection of acaricide resistance. Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.{50},49-54 doi: 10.1016/j.meegid.2017.02.011 DOI: https://doi.org/10.1016/j.meegid.2017.02.011

Beaurepaire, A., Piot, N., Doublet, V., Antunez, K., Campbell, E., Chantawannakul, P., Dalmon, A. (2020). Diversity and global distribution of viruses of the western honey bee Apis mellifera. Insects, 11, 239. DOI: https://doi.org/10.3390/insects11040239

Becchimanzi, A., Tatè, R., Campbell, E.M., Gigliotti, S., Bowman, A. S., & Pennacchio, F. (2020). A salivary chitinase of Varroa destructor influences host immunity and mite's survival. PLoS pathogens, 16(12), e1009075. https://doi.org/10.1371/journal.ppat.1009075 DOI: https://doi.org/10.1371/journal.ppat.1009075

Beetsma, J., & Zonneveld, K. (1992). Observations on the initiation and stimulation of oviposition of the Varroa mite. Exp Appl Acarol 16, 303–312. https://doi.org/10.1007/BF01218572. DOI: https://doi.org/10.1007/BF01218572

Beetsma, J., Boot, W & Calis, J. (1999) Invasion behavior of Varroa jacobsoni Oud. from bees into brood cells. Apidologie 30:125–140. DOI: https://doi.org/10.1051/apido:19990204

Belzunces, L.P., Tchamitchian, S., & Brunet, J. (2012). Neural effects of insecticides in the honey bee. Apidologie, 43, 348-370. DOI: https://doi.org/10.1007/s13592-012-0134-0

Blengino C. Sector Apícola (2014). Alimentos Argentinos. Ministerio de Agroindustria, Presidencia de la Nación. Buenos Aires, Argentina. http://www.alimentosargentinos.gob.ar/contenido/sectores/otros/apicola/informes/2014 pd. Consultado 20 Feb, 2017.

Brasesco, C., Gende, L.B., Negri, P., Szawarski, N., Iglesias, A., Eguaras, M.J., Ruffinengo, S.R., & Maggi, M.D. (2017). Assessing in Vitro Acaricidal Effect and Joint Action of a Binary Mixture Between Essential Oil Compounds (Thymol, Phellandrene, Eucalyptol, Cinnamaldehyde, Myrcene, Carvacrol) Over Ectoparasitic Mite Varroa Destructor (Acari: Varroidae). Journal of Apicultural Science, 61, 203 - 215. DOI: https://doi.org/10.1515/jas-2017-0008

Brasesco, C., Quintana, S., Di Gerónimo, V., Genchi García, M.L., Sguazza, G., Bravi, M.E & Maggi, M. (2020). Deformed wing virus type a and b in managed honeybee colonies of Argentina. Bulletin of Entomological Research, 29, 1-11 DOI: https://doi.org/10.1017/S000748532000036X

Boot, W., Calis, J & Beetsma, J. (1991) Invasion of varroa mites into honeybee brood cells; when do brood cells attract varroa mites? In: Proceedings experimental and apply entomology, N.E.V. Amsterdam, pp 154–156

Boot, W. J., Calis, J. N. M., & Beetsma, J. (1993). Invasion of Varroa jacobsons into honey bee brood cells: a matter of chance or choice? Journal of Apicultural Research, 32(3-4), 167–174. doi:10.1080/00218839.1993.1110130. DOI: https://doi.org/10.1080/00218839.1993.11101302

Boot, W.J., Sisselaar, D.J.A., Calis, J.N.M., & Beetsma, J. (1994). Factors affecting invasion of Varroa jacobsoni (Acari: Varroidae) into honeybee, Apis mellifera (Hymenoptera: Apidae), brood cells. Bulletin of Entomological Research, 84(1), 3-10. DOI: https://doi.org/10.1017/S0007485300032168

Boot, W., Van, B.M & Sabelis, M. (1995). Why do varroa mites invade worker brood cells of the honey bee despite lower reproductive success?. Behav Ecol Sociobiol 36:283–289. DOI: https://doi.org/10.1007/BF00165837

Bowen-Walker, P.L., Martin, S.J., & Gunn A. (1999). The transmission of deformed wing virus between honey bees (Apis mellifera L.) by the ectoparasitic mite Varroa jacobsoni Oud. Journal of Invertebrate Pathology 73: 101–106. DOI: https://doi.org/10.1006/jipa.1998.4807

Bravi, M.E., Avalos, J., Rosero, H., Maldonado, G., Reynaldi, F.J., & Genchi-GarcíaM. L. (2020). Comunicación breve: Detección molecular de virus de abejas en Ecuador. Revista Española de Investigación Agraria , 18 (1), e05SC02. https://doi.org/10.5424/sjar/2020181-15779. DOI: https://doi.org/10.5424/sjar/2020181-15779

Casanova, O., & Perruolo, G. (1992). Parasitic diseases of the honey bee Apis mellifera in Tachir, Venezuela. Vida Apícola 54, 20–24. ISSN 0213-1015.

Casanova, O. (2000) Evolución del comportamiento grooming contra Varroa jacobsoni (Acari: Dermanicidae) en abejas africanizadas (Hymenoptera: Apidae) en el estado Táchira, Venezuela. Revista Cientifica UNET, Organo Divulgatorio del Decanato de Investigación de la Universidad Experimental del Táchira, San Cristobal Venezuela. Rev. Cient. UNET 12(1), 1–10

Castro, A. V., Medici, S. K., Sarlo, E. G., & Eguaras, M. J. (2010). Agregado de parafina en ceras estampadas y su efecto sobre el labrado de panales y viabilidad de las crías de Apis Mellifera. Zootecnia Tropical, 28(3), 353-361. Recuperado en 11 de noviembre de 2022, de http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S0798-72692010000300006&lng=es&tlng=es.

Chagas, D., Monteiro, F., Hubner, S., Lima, M., & Fischer, G. (2019). Viruses that affect Apis mellifera and their occurrence in Brazil. Ciência Rural. 49. 10.1590/0103-8478cr20181042. DOI: https://doi.org/10.1590/0103-8478cr20181042

Calderón, R.A., van Veen, J.W., Sommeijer, M.J. et al. (2009). Reproductive biology of Varroa destructor in Africanized honey bees (Apis mellifera). Exp Appl Acarol 50, 281–297. https://doi.org/10.1007/s10493-009-9325-4. DOI: https://doi.org/10.1007/s10493-009-9325-4

Calderón-Fallas, R. A. (2019). Comportamiento reproductivo del ácaro Varroa destructor (Mesostigmata: Varroidae) en celdas con cría de obrera y zángano en abejas africanizadas (Apis mellifera) en condiciones tropicales. Ciencias veterinarias, 37(2), DOI: https://doi.org/10.15359/rcv.37-2.5

Calderón-Fallas, R. A., Van Veen, J. W., Olate-Olave, V. R., Verde, M., Doorn, M.,Vallejos, l., & Orozco-Delgad, J.V. (2022). Africanized honey bee colonies in Costa Rica: First evidence of its management, brood nest structure and factors associated with varroa mites infestation. PREPRINT (Version 1) available at Research Square [https://doi.org/10.21203/rs.3.rs-1903135/v1]. DOI: https://doi.org/10.21203/rs.3.rs-1903135/v1

Caldwell, R.M., Schafe,r J.F., Compton LE., & Patterson, F.L. (1958). Tolerance to cereal leaf rusts. Science. 128(3326):714– 715. DOI: https://doi.org/10.1126/science.128.3326.714

Carreck, N. L., Ball, B. V. , & Martin, S. J. (2010). Honey bee colony collapse and changes in viral prevalence associated with Varroa destructor. J. Apicult. Res. 49: 93–94. DOI: https://doi.org/10.3896/IBRA.1.49.1.13

Casteels, P., Ampe, C., Jacobs, F., & Tempst, P. (1993). Functional and chemical characterization of Hymenoptaecin, an antibacterial polypeptide that is infection-inducible in the honeybee (Apis mellifera). Journal of Biological Chemistry, 268(10), 7044–7054 DOI: https://doi.org/10.1016/S0021-9258(18)53143-4

Charreton, M., Decourtye, A., Henry, M., Rodet, G., Sandoz, J-C., Charnet, P., et al. (2015). A Locomotor Deficit Induced by Sublethal Doses of Pyrethroid and Neonicotinoid Insecticides in the Honeybee Apis mellifera. PLoS ONE 10(12): e0144879. https://doi.org/10.1371/journal.pone.0144879 DOI: https://doi.org/10.1371/journal.pone.0144879

Chambi Tacca, E. G., & Condori Apaza, G. R. (2016). Formulación y evaluación de un acaricida a base de aceite esencial de orégano (Origanum Vulgare) para el control de ácaros (Varroa Destructor) en colmenas de abeja (Apis Mellifera). Repositorio Institucional – UNAS. Universidad Nacional de San Agustín de Arequipa. Tesis. http://repositorio.unsa.edu.pe/bitstream/handle/UNSA/3222/IQchtaeg04.pdf?isAllowed=y&sequence=1

Chamorro. E. R., Sequeira. A.F., Velasco, G.A., Zalazar, M.F., & Ballerini, G.A. (2011). Evaluation of Tagetes Minuta L. Essential oils to control Varroa destructor (Acari: Varroidae). The Journal of the Argentine Chemical Society Vol. 98, 39-47 (2011)

Chen, Y.P., Pettis, J., Collins, A., & Feldlaufer. M.F. (2006). Prevalence and transmission of honey bee viruses. Appl Environ Microbiol 72:606–611 DOI: https://doi.org/10.1128/AEM.72.1.606-611.2006

Chen, Y. P., & Siede, R. (2007). Honey bee viruses. Adv Virus Res 70:33–80 DOI: https://doi.org/10.1016/S0065-3527(07)70002-7

Clarke, D.D. (1986). Tolerance of parasites and disease in plants and its significance in host-parasite interactions. Int J Mol Sci. 19(3):810.

Cobb, N.A. (1894). Contributions to an economic knowledge of Australian rusts (Uredineae): improving wheat by selection (No. 18). C. Potter, Government Printer, Australia

Corrêa-Marques, M. H., Issa, M. R. C., & Jong, D. D. (2000). Classification and quantification of damaged Varroa jacobsoni found in the debris of honey bee colonies as criteria for selection?. American Bee Journal, 140(10), 820-824.

Crane, E. (1978). The Varroa mite (honey-bees). Bee World.

Cueto P., José, M., Estevez, B., & José, A. (2020). Evaluación del efecto acaricida de las infusiones de Cymbopogon sp., Eucaliptus sp., Citrus aurantium y Mentha sp., en el control de Varroa destructor en Apis mellifera L. Tesis. Zamorano: Escuela Agrícola Panamericana.

Diniz, N. M., Soares, A. E. E., Sheppard, W. S., & Del Lama, M. A. (2003). Genetic structure of honeybee populations from southern Brazil and Uruguay. Genetics and Molecular Biology, 26, 47-52. DOI: https://doi.org/10.1590/S1415-47572003000100008

Donzé, G., Herrmann, M., Bachofen, B., & Guerin, P. (1996). Effect of mating frequency and brood cell infestation rate on the reproductive success of the honeybee parasite Varroa jacobsoni. Ecological Entomology, 21(1), 17-26 DOI: https://doi.org/10.1111/j.1365-2311.1996.tb00261.x

Dudai, Y., Buxbaum, J., Corfas, G., & Ofarim, M. (1987). Formamidines interact with Drosophila octopamine receptors, alter the flies' behavior and reduce their learning ability. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 161(5), 739-746. https://doi.org/10.1007/BF00605015. DOI: https://doi.org/10.1007/BF00605015

Dynes, T. L., De Roode, J. C., Lyons, J. I., Berry, J. A., Delaplane, K. S., & Brosi, B. J. (2016). Fine scale population genetic structure of Varroa destructor, an ectoparasitic mite of the honey bee (Apis mellifera). Apidologie, 48(1), 93–101. doi:10.1007/s13592-016-0453-7. DOI: https://doi.org/10.1007/s13592-016-0453-7

de Groot, G. S., Aizen, M. A., Sáez, A & Morales, C. L (2021). Large-scale monoculture reduces honey yield: The case of soybean expansion in Argentina. Agriculture, ecosystems & environment, 306, 107203. doi: 10.1016/j.agee.2020.107203 DOI: https://doi.org/10.1016/j.agee.2020.107203

De Guzman, L., Rinderer, T.E & Frake, A. (2007) Growth of Varroa destructor populations in Russian honey bee (Hymenoptera: Apidae) colonies. Ann Entomol Soc Am 100:187–195

De Jong, D., ROMA, D. & Gonçalves, L. (1982). A comparative analysis of shaking solutions for the detection of Varroa jacobsoni on adult honeybees. Apidologie. 13. 297-306. 10.1051/apido:19820308. DOI: https://doi.org/10.1051/apido:19820308

De Jong, D & Soares, A.E.E. (1997). An isolated population of Italian bees that has survived Varroa jacobsoni infestation without treatment for over 12 years. Am. Bee J. 137, 742–745.

De la Mora, Á., Emsen, B., Morfín, N., Borges, D., Eccles, L., Kelly, P.G., Goodwin, P.H., & Guzmán Novoa, E. (2020). Selective Breeding for Low and High Varroa destructor Growth in Honey Bee (Apis mellifera) Colonies: Initial Results of Two Generations. Insects. 11 (12), 864; https://doi.org/10.3390/insects11120864. DOI: https://doi.org/10.3390/insects11120864

Dhifi, W., Bellili, S., Jazi, S., Bahloul, N., Mnif, W. (2016).”Essential Oils’ Chemical Characterization and Investigation of Some Biological Activities: A Critical Review”. Medicines. 3: 25. DOI: https://doi.org/10.3390/medicines3040025

Damiani, N., Gende, L.B., Bailac, P., Marcangeli, J.A & Eguaras, M.J. (2009). Acaricidal and Insecticidal Activity of Essential Oils On Varroa Destructor (Acari: Varroidae) and Apis Mellifera (Hymenoptera: Apidae). Parasitol. Res. , 106 ( 1 ) ( 2009 ) , págs. 145 - 152 , 10.1007/s00436-009-1639-y DOI: https://doi.org/10.1007/s00436-009-1639-y

Domínguez-Ayala, R., Moo-Valle, H., May-Itzá, W. D. J., Medina-Peralta, S., & Quezada-Euán, J. J. G. (2016). Stock composition of northern neotropical honey bees: mitotype and morphotype diversity in Mexico (Hymenoptera: Apidae). Apidologie, 47(5), 642-652. DOI: https://doi.org/10.1007/s13592-015-0414-6

Eguaras, M., Marcangeli., & J., Fernandez, N. (1994) Influence of the parasitic intensity on Varroa jacobsoni Oud. Reproduction. J Apic Res 33:155–159 DOI: https://doi.org/10.1080/00218839.1994.11100863

Eguaras, M & Ruffinengo, S. (2006) Estrategias para el control de Varroa. Editorial Martin. Mar del Plata, Argentina.

Evans, P.D., & Gee, J.D. (1980). Action of formamidine pesticides on octopamine receptors. Nature, 287(5777), 60–62. doi:10.1038/287060a0. DOI: https://doi.org/10.1038/287060a0

Evans, J.D,, Aronstein, K., Chen, Y.P,, Hetru, C., Imler, J., Jiang, H., Kanost, M., Thompson, G., Zou, Z & Hultmark, D. (2006) Immune pathways and defence mechanisms in honey bees Apis mellifera. Insect Mol Biol 15:645–656 DOI: https://doi.org/10.1111/j.1365-2583.2006.00682.x

Espinosa-Montaño, L.G & Guzmán-Novoa E. (2007). Eficacia de dos acaricidas naturales, ácido fórmico y timol, para el control del ácaro Varroa destructor de las abejas (Apis mellifera L.) en Villa Guerrero, Estado de México, México. Veterinario Méx. 38 (1):9-19

Ellerry Juvencio Rivera Hernández Heredia (2017). Eficacia de aceite esencial de Allium sativum en colmenas de Apis mellifera para control del ácaro Varroa destructor, en Costa Rica. Universidad Nacional, Costa Rica.

Elzen, P. J., Eischen, F. A., Baxter, J. R., Elzen, G. W., & Wilson, W. T. (1999). Detection of resistance in US Varroa jacobsoni Oud. (Mesostigmata: Varroidae) to the acaricide fluvalinate. Apidologie, 30(1), 13-17. DOI: https://doi.org/10.1051/apido:19990102

Elzen, P.J., Baxter, J.R., Spivak. M., & Wilson, W.T. (2000) Control of Varroa jacobsoni Oud. resistant to fluvalinate and amitraz using coumaphos. Apidologie 31:437–441. https://doi.org/10.1051/apido:2000134 DOI: https://doi.org/10.1051/apido:2000134

Elzen, P. J., & Westervelt, D. (2002). Detection of coumaphos resistance in Varroa destructor in Florida. American Bee Journal, 142(4), 291-292.

Evans, J. D., & Pettis, J. S. (2005). Colony‐level impacts of immune responsiveness in honey bees, Apis mellifera. Evolution, 59(10), 2270-2274. DOI: https://doi.org/10.1111/j.0014-3820.2005.tb00935.x

Fernández, N & García, O. (1997). Disminución de la eficacia del fluvalinato en el control del ácaro Varroa jacobsoni en Argentina. La Gaceta del Colmenar 4, 14–18

Fetters, A.M., Cantalupo, P.G., Wei, N., Robles, M.T.S., Stanley, A., Stephens, J.D., Pipas, J.M., & Ashman, T.L. (2022). The pollen virome of wild plants and its association with variation in floral traits and land use. Nat Commun. Jan 26;13(1):523. doi: 10.1038/s41467-022-28143-9. PMID: 35082293; PMCID: PMC8791949. DOI: https://doi.org/10.1038/s41467-022-28143-9

Floris, I., Pusceddu, M & Satta, A. (2020). Correction: Floris, I., et al. How the Infestation Level of Varroa destructor Affects the Distribution Pattern of Multi-Infested Cells in Worker Brood of Apis mellifera. Veterinary Science 2020, 7, 136. Veterinary Sciences. 7. 202. 10.3390/vetsci7040202. DOI: https://doi.org/10.3390/vetsci7040202

Fukuto, T. R. (1990). Mechanism of action of organophosphorus and carbamate insecticides. Environmental health perspectives, 87, 245–254. https://doi.org/10.1289/ehp.9087245. DOI: https://doi.org/10.1289/ehp.9087245

Frost, E.H., Shutler, D., & Hillier, N.K. (2013). Effects of fluvalinate on honey bee learning, memory, responsiveness to sucrose, and survival. Journal of Experimental Biology, 216, 2931 - 2938. DOI: https://doi.org/10.1242/jeb.086538

Gashout, H.A., Goodwin, P.H., & Guzman-Novoa, E. (2018). Lethality of synthetic and natural acaricides to worker honey bees (Apis mellifera) and their impact on the expression of health and detoxification-related genes. Environmental Science and Pollution Research. doi:10.1007/s11356-018-3205-6 DOI: https://doi.org/10.1007/s11356-018-3205-6

Gonçalves, L.S. (1974). The introduction of the African Bees (Apis mellifera adansonii) into Brazil and some comments on their spread in South America. Am. Bee J. 114: 414-419

Gonzalez-Cabrera, J., Davies, T.G.E., Field, L., Kennedy, P., & Williamson, M. (2013). An Amino Acid Substitution (L925V) Associated with Resistance to Pyrethroids in Varroa destructor. PloS one. 8. e82941. 10.1371/journal.pone.0082941. DOI: https://doi.org/10.1371/journal.pone.0082941

González-Cabrera, J., S. Rodríguez-Vargas, T. G. E. Davies, L. M. Field, D. Schmehl, J. D. Ellis, K. Krieger, & Williamson,M. S. (2016). Novel mutations in the voltage-gated sodium channel of pyrethroid-resistant Varroa destructor populations from the Southeastern USA. PLoS One. 11(5): e0155332. DOI: https://doi.org/10.1371/journal.pone.0155332

Gonzalez-Cabrera, J., H. Bumann, S. Rodriguez-Vargas, P. J. Kennedy, K. Krieger, et al. (2018). A single mutation is driving resistance to pyrethroids in European populations of the parasitic mite, Varroa destructor. J. Pest Sci. 91: 1137–1144. DOI: https://doi.org/10.1007/s10340-018-0968-y

Garrido, C., Rosenkranz, P., Paxton, R.J & Goncalves, L.S. (2003). Temporal changes in Varroa destructor fertility and haplotype in Brazil. Apidologie 34:535–541 DOI: https://doi.org/10.1051/apido:2003041

Garrido, PM., Antúnez, K., Martín, M., Porrini, M.P, Zunino, P & Eguaras, M.J. (2019). Immune-related gene expression in nurse honey bees (Apis mellifera) exposed to synthetic acaricides Joural of insects Physiology. 2013; 59 :113–119. doi: 10.1016/j.jinsphys.2012.10.019. DOI: https://doi.org/10.1016/j.jinsphys.2012.10.019

Gashout, H.A., Guzman-Novoa, E., Goodwin, P.H., & Correa-Benítez, A. (2020). Impact of sublethal exposure to synthetic and natural acaricides on honey bee (Apis mellifera) memory and expression of genes related to memory. Journal of insect physiology, 121, 104014. https://doi.org/10.1016/j.jinsphys.2020.104014. DOI: https://doi.org/10.1016/j.jinsphys.2020.104014

Gallai, N., Salles, J.M., Settele, J., & Vaissiere, B.E., (2009). Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol. Econ. 68:810–21. DOI: https://doi.org/10.1016/j.ecolecon.2008.06.014

Giacobino, A., Bulacio Cagnolo, N., Merke, J., Orellano, E., Bertozzi, E., Masciangelo, G., Pietronave, H., Salto, C & Signorini, M. (2014) Risk factors associated with the presence of Varroa destructor in honey bee colonies from east-central Argentina. Prev. Vet. Med. 115(3-4), 280–287 DOI: https://doi.org/10.1016/j.prevetmed.2014.04.002

Goetz, B & Koeninger, N. (1992). Structural features trigger capping of brood cells in honey bees. Apidologie 23:211–216. DOI: https://doi.org/10.1051/apido:19920303

Goetz, B & Koeninger, N. (1993). The distance between larva and cell opening triggers brood cell invasion by Varroa jacobsoni. Apidologie 24:67–72 DOI: https://doi.org/10.1051/apido:19930108

Guzmán-Novoa, E., Vandame, R., & Arechavaleta, M.E. (1999). Susceptibility of European and Africanized honey bees (Apis mellifera L.) to Varroa jacobsoni Oud. in Mexico. Apidologie, 30(2-3), 173-182. DOI: https://doi.org/10.1051/apido:19990207

Guzman‐Novoa, E., Morfin, N., De la Mora, A., Macías-Macías, J.O., Tapia-González, J.M., Contreras-Escareño, F., Medina-Flores, C.A., Correa-Benítez, A., & Quezada-Euán, J.J. (2020). The Process and Outcome of the Africanization of Honey Bees in Mexico: Lessons and Future Directions. Frontiers in Ecology and Evolution. DOI: https://doi.org/10.3389/fevo.2020.608091

Guala, M.S., Matías, O., Lapissonde, H.V.E. & Pérez, G.A. (2014). Acaricide Effect of Raw Essential Oil From Aguaribay (Schinu molle L.) and Their Fractions in Beehives (Apis mellifera), Regarding the Chemical Composition. Inf. tecnol. vol.25 no.2 La Serena 2014. http://dx.doi.org/10.4067/S0718-07642014000200017. DOI: https://doi.org/10.4067/S0718-07642014000200017

Gurib-Fakim, A. (2006). Medicinal plants: Traditions of yesterday and drugs of tomorrow. Molecular Aspects of Medicine. 27: 1–93. DOI: https://doi.org/10.1016/j.mam.2005.07.008

Hillier, N.K., Frost, E.H., & Shutler, D. (2013). Fate of Dermally Applied Miticides Fluvalinate and Amitraz Within Honey Bee (Hymenoptera: Apidae) Bodies. Journal of Economic Entomology, 106(2), 558–565. doi:10.1603/ec12300 DOI: https://doi.org/10.1603/EC12300

Huamán, N & Silva, G. (2020). Efecto acaricida de aceite esencial de molle (Schinus molle) en el control de Varroa destructor en colmenas de abejas (Apis mellifera). Agroindustrial Science, ISSN-e 2226-2989, Vol. 10, Nº. 2 (mayo - agosto), págs. 145-151. DOI: https://doi.org/10.17268/agroind.sci.2020.02.04

Hung, A.C,, Adams, J.R & Shimanuki, H. (1995). Bee parasitic mite syndrome (II): the role of varroa mite and viruses. Am Bee J 135:702–704

Invernizzi, C., Antúnez, K., Campa, J., Harriet, J., Mendoza, Y.E., Santos, E. & Zunino, P. (2011) Situación sanitaria de las abejas melíferas en Uruguay. Veterinaria, 47, 15–27.

Invernizzi, C., Zefferino, I., Santos, E., Sánchez, L., & Mendoza, Y. (2016) Multilevel assessment of grooming behavior against Varroa destructor in Italian and Africanized honey bees. J. Apic. Res, in press DOI: https://doi.org/10.1080/00218839.2016.1159055

Invernizzi, C., Antúnez,C., Arredondo, D., Branchiccela, B., Castelli, L., Juri, P., Mendoza, Y., Nogueira, E., Salvarrey , S & Santos, E. ( 2022 ). Health situation of honey bees in Uruguay: News from the last decade. Veterinary ( Montevideo ), 58 ( 217 ), e20225821704. https://doi.org/10.29155/VET.58.217.4 DOI: https://doi.org/10.29155/VET.58.217.4

Iglesias A., Mitton, G., Szawarski, N., Cooley, H., Ramos, F., Meroi Arcerito, F., Brasesco, C., Ramirez, C., Gende, L., Eguaras, M., Fanovich, A., & Maggi, M. (2020). Essential oils from Humulus lupulus as novel control agents against Varroa destructor, Industrial Crops and Products, Volume 158, 2020, 113043, ISSN 0926-6690, https://doi.org/10.1016/j.indcrop.2020.113043. DOI: https://doi.org/10.1016/j.indcrop.2020.113043

Iglesias, A., Gimenez Martinez, P., Ramirez, C., Mitton, G., Meroi Acerito, F.R., Fangio, M.R., Churio, M.S., Fuselli, S., Fanovich, S., Eguaras, M., & Maggi, M. (2021). Valorization of hop leaves for development of eco-friendly bee pesticides Apidologie. vol. 52 p. 186 - 198. DOI: https://doi.org/10.1007/s13592-020-00808-8

Jay, S.C. (1966). Drifting of honeybees in commercial apiaries. III. Effect of apiary layout. Journal of Apicultural Research 5: 137–148. https://doi.org/10.1080/00218839.196 6.11100147. DOI: https://doi.org/10.1080/00218839.1966.11100147

Johnson, R.M., H.S. Pollock, & Berenbaum, M.R. (2009). Synergistic interactions between in-hive miticides in Apis mellifera. J. Econ. Entomol. 102: 474–479. DOI: https://doi.org/10.1603/029.102.0202

Jumbo Benítez, N.C., Fernández Guarnizo, P., Sisalima, R., & Balcázar, M. (2019). Preparation of a natural acaricide based on the essential oil of the graveolens route for the control of varroa (varroa jocobsoni oudemans) in bees (apis mellifera). Revista del Colegio de Médicos Veterinarios del Estado Lara, ISSN-e 2244-7733, Año 9, Vol. 17.

Kast, C., Kilchenmann, V & Charrière J.D. (2021). Long-term monitoring of lipophilic acaricide residues in commercial Swiss beeswax. Pest Manag Sci. Sep;77(9):4026-4033. doi: 10.1002/ps.6427. Epub 2021 May 11. PMID: 33896103; PMCID: PMC8453734. DOI: https://doi.org/10.1002/ps.6427

Kerr, W.E., & Nielsen, R.A. (1967). Sex determination in bees (Apinae). Journal of Apicultural Research, 6(1), 3-9. DOI: https://doi.org/10.1080/00218839.1967.11100154

Kraus, B. (1994). Factors influencing host choice of the honey bee parasite Varroa jacobsoni Oud Exp. Appl. Acarol., 18 (1994), pp. 435-443. DOI: https://doi.org/10.1007/BF00051525

Kuenen, L.P.S., & Calderone.,N.W. (1997). Transfers of Varroa Mites from Newly Emerged Bees: Preferences for Age- and Function-Specific Adult Bees (Hymenoptera: Apidae) J. Insect. Behav. 1997;10:213–228. doi: 10.1007/BF02765554. DOI: https://doi.org/10.1007/BF02765554

Le Conte, Y., Ellis, M., & Ritter, W. (2010). Varroa mites and honey bee health: Can Varroa explain part of the colony losses? Apidologie 41:353–63. DOI: https://doi.org/10.1051/apido/2010017

Martínez Fhürer, C., & López, G. (2018). Estudio de la eficacia acaricida del ácido oxálico en colonias de Apis mellifera L. (Hymenoptera: Apidae) en un colmenar en el partido de La Plata, provincia de Buenos Aires.. http://sedici.unlp.edu.ar/handle/10915/69206

Maggi, M., Ruffinengo, S., Gende, L., Eguaras, M & Sardella, N. (2008). Baseline LC50 levels of Amitraz, Coumaphos, Fluvalinate and Flumethrine in populations of Varroa destructor from Buenos Aires Province, Argentina. J. Apic. Res. 47(4), 292–295 DOI: https://doi.org/10.1080/00218839.2008.11101477

Maggi, M., Ruffinengo, S., Damiani, N., Sardella, N & Eguaras, M. (2009) A First detection of Varroa destructor resistance to coumaphos in Argentina. Exp. Appl. Acarol. 47(4), 317–320 DOI: https://doi.org/10.1007/s10493-008-9216-0

Maggi, M., Ruffinengo, S., Negri, P & Eguaras, M. (2010) Resistance phenomena to amitraz from populations of the ectoparasitic mite Varro destructor of Argentina. Parasitol. Res. 107(5), 1189–1192 DOI: https://doi.org/10.1007/s00436-010-1986-8

Maggi, M.D., Ruffinengo, S.R., Mendoza, Y., Ojeda, P., Ramallo, G., Floris, I & Eguaras, M.J. (2011). Susceptibility of Varroa destructor (Acari: Varroidae) to synthetic acaricides in Uruguay: Varroa mites' potential to develop acaricide resistance. Parasitol. Res. 108, 815–821 DOI: https://doi.org/10.1007/s00436-010-2122-5

Maggi, M., Ruffinengo, S., Negri, P., Brasesco, C., Medici, S., et al. (2013). The status of bee health and colony losses in Argentina. In: Honeybees: Foraging Behavior, Reproductive Biology and Diseases. Ed. Cameron Molley. Nova Publishing Group. ISBN: 978-1-62948-661-1. p. 212-234

Maggi, M., Damiani, Natalia., Brasesco, C., Szawarski, N., Mitton, G., Mariani, F., & Sammataro, D., Quintana, S., & Eguaras, M. (2016). The susceptibility of Varroa destructor against oxalic acid: A study case. Bulletin of Insectology. 70.

Matheson A. (1995). First documented findings of Varroa jacobsoni outside its presumed natural range. Apiacta 30:1–8

Mathieu, L., & Faucon, J.P. (2000). Changes in the response time for Varroa jacobsoni exposed to amitraz. Journal of Apicultural Research, 39(3-4), 155-158. DOI: https://doi.org/10.1080/00218839.2000.11101036

Martin, S.J. (1994). Ontogénesis del ácaro Varroa Jacobsoni Oud. en cría obrera de la abeja melífera Apis mellifera L. en condiciones naturales. Exp. aplicación Acarol. 1994; 18 :87–100. doi: 10.1007/BF00055033. DOI: https://doi.org/10.1007/BF00055033

Marchetti, S., Barbattini, R., & D'agaru, M. (1984). Comparative effectiveness of treatments used to control Varroa jacobsoni Oud. Apidologie, 15, 363-378. DOI: https://doi.org/10.1051/apido:19840401

Moro A., Blacquière T., Dahle B., Dietemann V., Le Conte Y., Locke B., Neumann P & Beaurepaire A. (2021). Adaptive population structure shifts in invasive parasitic mites, Varroa destructor. Ecol. Evol. ; 11:5937–5949. doi: 10.1002/ece3.7272. DOI: https://doi.org/10.1002/ece3.7272

Medici, S.K., Castro, A., Sarlo, E.G., Marioli, J.M., & Eguaras, M.J. (2012). The concentration effect of selected acaricides present in beeswax foundation on the survival of Apis mellifera colonies. J Apic Res. 51(2):164–168.

Medici, S., Castro, A., Sarlo, G., Marioli, J., & Eguaras, M. (2011). The concentration effect of selected acaricides present in beeswax foundation on the survival of Apis mellifera colonies. J. Apic. Res. 2, 164–168 DOI: https://doi.org/10.3896/IBRA.1.51.2.03

Medici, S., Maggi, M., Sarlo, E., Ruffinengo, S., Marioli, J., & Eguaras, M. (2015). Presence of syntethic acaricides in beeswax and its relationship with the development of resistance in Varroa destructor. J. Apic. Res. 53, In Press. DOI: https://doi.org/10.1080/00218839.2016.1145407

Medina Flores, C. A., Guzmán Novoa, E., Hamiduzzaman, M., Aréchiga Flores, C. F., & López Carlos, M. A. (2014). Africanized honey bees (Apis mellifera) have low infestation levels of the mite Varroa destructor in different ecological regions in Mexico. DOI: https://doi.org/10.4238/2014.February.21.10

Medina, L. M., Martin, S. J., Espinosa-Montaño, L., & Ratnieks, F. L. (2002). Reproduction of Varroa destructor in worker brood of Africanized honey bees (Apis mellifera). Experimental & applied acarology, 27(1), 79-88. DOI: https://doi.org/10.1023/A:1021579113907

Mendoza, Y.; Tomasco, I.H.; Antúnez, K.; Castelli, L.; Branchiccela, B.; Santos, E & Invernizzi, C. (2020). Unraveling Honey Bee–Varroa destructor Interaction: Multiple Factors Involved in Differential Resistance between Two Uruguayan Populations. Vet. Sci, 7, 116. https://doi.org/10.3390/vetsci7030116 DOI: https://doi.org/10.3390/vetsci7030116

Message, D., Teixeira, E.W., & De Jong, D. (2012). Situação da Sanidade das abelhas no Brasil. In: Polinizadores no Brasil: Contribuição e Perspectivas para a Biodiversidade. Orgs. V.L. Imperatriz-Fonseca; D.A.L. Canhos; D.A. Alves; A.M. Saraiva - São Paulo. Editora da Universidade de São Paulo, 488 p

Mitton, G.A., Szawarski, N., Ramos, F., Fuselli, S., Meroi Arcerito, F.R., Eguaras, M.J., Ruffinengo, S., & Maggi, M.D. (2018). Varroa destructor: when reversion to coumaphos resistance does not happen. J Apic Res. 57(4):536–540. DOI: https://doi.org/10.1080/00218839.2018.1475038

Mitton, G. A., Meroi Arcerito, F., Cooley, H.,Fernández de Landa, G., Eguaras, J. M., Ruffinengo, S. R., & Maggi, M.D. (2022) More than sixty years living with Varroa destructor: a review of acaricide resistance, International Journal of Pest Management, DOI: 10.1080/09670874.2022.2094489 DOI: https://doi.org/10.1080/09670874.2022.2094489

Milani, N. (1995). The resistance of Varroa jacobsoni Oud to pyrethroids: a laboratory assay. Apidologie. 26(5):415– 429. DOI: https://doi.org/10.1051/apido:19950507

Mutinelli, F. (2016). Veterinary medicinal products to control Varroa destructor in honey bee colonies (Apis mellifera) and related EU legislation–an update. Journal of Apicultural Research, 55(1), 78-88. DOI: https://doi.org/10.1080/00218839.2016.1172694

Martínez Fhürer, C & López, G. (2018). Estudio de la eficacia acaricida del ácido oxálico en colonias de Apis mellifera L. (Hymenoptera: Apidae) en un colmenar en el partido de La Plata, provincia de Buenos Aires. http://sedici.unlp.edu.ar/handle/10915/69206

Marcangeli, J. A., Eguaras, M. J. & Fernandez, N. A.(1992). Reproduction of Varroa jacobsoni (Acari : Mesostigmata: Varroidae) in temperate climates of Argentina. Apidologie, 23 1. 57-60. DOI: https://doi.org/10.1051/apido:19920106. DOI: https://doi.org/10.1051/apido:19920106

Marcangeli, J. (1994). Reproducción diferencial del ácaro ectoparásito Varroa jacobsoni Oud. (Acari: Gamasida: Varroidae) en celdas de cría de obreras y zánganos de Apis mellifera L. (Hymenoptera: Apidae). Tesis Doctoral, Univ. Nac. Mar del Plata, 129 p.

Mondragón, L., Spivak, M., & Vandame, R. (2005). A multifactorial study of the resistance of honeybees Apis mellifera to the mite Varroa destructor over one year in Mexico. Apidologie, 36(3), 345-358. DOI: https://doi.org/10.1051/apido:2005022

Monetti, L., Marcangeli, J., Eguaras, M & Fernandez, N. (1991). Pérdida de peso en la abeja Apis mellifera, raza criolla, producida por el ectoparásito Varroa jacobsoni. EcologÌa Austral: 1:103-106,1991 Asociación Argentina de EcologÌa.

Montiel, E & Piola, G. (1976). A new enemy of bees. In: Varroasis a honey bee disease. Bucharest, Romania: Apimondia Publishing House. p 36-37.

Moretto, G., Gonçalves, L. S., De Jong, D., & Bichuette, M. Z. (1991). The effects of climate and bee race on Varroa jacobsoni Oud infestations in Brazil. Apidologie, 22(3), 197-203. DOI: https://doi.org/10.1051/apido:19910303

Moretto, G. (2002). Mortality of Varroa destructor in broodless Africanized and Carnica honey bee (Apis mellifera L.) colonies. Interciencia, 27(12), 702-704.

Moro, A., Blacquière, T., Panziera, D., Dietemann, V., & Neumann, P. (2021). Host-parasite co-evolution in real-time: Changes in honey bee resistance mechanisms and mite reproductive strategies. Insects, 12(2), 120. DOI: https://doi.org/10.3390/insects12020120

Mortensen, A.N., & Ellis, J.D. (2018). The effects of artificial rearing environment on the behavior of adult honey bees, Apis mellifera L. Behav. Ecol. Sociobiol. 72: 92. DOI: https://doi.org/10.1007/s00265-018-2507-5

Mullin, C.A., Frazier, M., Frazier, J.L., Ashcraft, S., Simonds, R., Vanengelsdorp ,D & Pettis. J.S. (2010). High levels of miticides and agrochemicals in North American apiaries: implications for honey bee health. Plos One. 5: e9754. DOI: https://doi.org/10.1371/journal.pone.0009754

Nation, J.L., Sanford, M.T & Milne, K. (1992). Cuticular Hydrocarbons from Varroa jacobsoni. Exp. Appl. Acarol, 16:331–344. doi: 10.1007/BF01218575. DOI: https://doi.org/10.1007/BF01218575

Neira M.C., Heinsohn P.P., Carrillo Ll, R.,Báez, M.A & Fuentealba, J. (2004). A. The effect of lavender and laurel essential oils on Varroa destructor Anderson & Truemann (Acari:Varroidae). Agricultura Técnica (Chile) 64(3). DOI: https://doi.org/10.4067/S0365-28072004000300003

Nazzi F., & Le Conte Y. (2015). Ecology of Varroa destructor, the Major Ectoparasite of the Western Honey Bee, Apis mellifera. Annu Rev Entomol. 2016;61:417-32. doi: 10.1146/annurev-ento-010715-023731. Epub 2015 Dec 14. PMID: 26667378.

Nazzi, F., & Le Conte, Y. (2016). Ecology of Varroa destructor, the Major Ectoparasite of the Western Honey Bee, Apis mellifera. Annual review of entomology, 61, 417-32 . DOI: https://doi.org/10.1146/annurev-ento-010715-023731

Oldroyd, B.P. (1999). Coevolution while you wait: Varroa jacobsoni, a new parasite of western honeybees. Trends Ecol. Evol. 14, 312–315. DOI: https://doi.org/10.1016/S0169-5347(99)01613-4

Piccirillo, G. A. & De Jong, D. (2004). Old honey bee brood combs are more infested by the mite Varroa destructor than are new brood combs. Apidologie, 35 4. 359-364 DOI: https://doi.org/10.1051/apido:2004022 DOI: https://doi.org/10.1051/apido:2004022

Pino, O., Sánchez, Y.,Rodríguez, H., Correa, T.M., Demedio & J; Sanabria, J.L. (2011). Rev. Protección Chemical characterization and acaricidal activity of the essential oil from Piper aduncum subsp.ossanum against Varroa destructor. Veg. v.26 n.1. La Habana ene.-abr. 2011.

Pinto, M. A., Rubink, W. L., Patton, J. C., Coulson, R. N., & Johnston, J. S. (2005). Africanization in the United States: replacement of feral European honeybees (Apis mellifera L.) by an African hybrid swarm. Genetics, 170(4), 1653-1665. DOI: https://doi.org/10.1534/genetics.104.035030

Peck, D.T., Smith, M.L., & Seeley, T.D. (2016). Varroa destructor mites can nimbly climb from flowers onto foraging honey bees. PLoS One 11 (12): e0167798. https:// doi.org/10.1371/journal.pone.0167798. DOI: https://doi.org/10.1371/journal.pone.0167798

Peck, D.T. & Seeley, T.D. (2019). Mite bombs or robber lures? The roles of drifting and robbing in Varroa destructor transmission from collapsing honey bee colonies to their neighbors. PLoS One 14 (6): e0218392. https://doi. org/10.1371/journal.pone.0218392. DOI: https://doi.org/10.1371/journal.pone.0218392

Peck, D. (2021). The Parasitic Mite Varroa destructor: History, Biology, Monitoring, and Management. 10.1002/9781119583417.ch20. DOI: https://doi.org/10.1002/9781119583417.ch20

Pettis, J.S., Ochoa, R., & Orr, J. (2003). Interception of a live Varroa mite on imported cut flowers in the United States. International Journal of Acarology 29: 291–292. https://doi. org/10.1080/01647950308684342. DOI: https://doi.org/10.1080/01647950308684342

Principal, J., Samtos Moros, V & Laguna, F. (1991) Varroasis en Venezuela. In: Proceeding XII Congreso Venezolano de Entomología. Mérida, Venezuela. p 22

Porrini, L. P., Quintana, S., Brasesco, C., Maggi, M. D., Porrini, M. P., Garrido, M. P., & Eguaras, M. J. (2022). Current genetic diversity of managed and commercially produced Apis mellifera colonies in Argentina inferred by wing geometric morphometrics and COI-COII mtDNA locus. Apidologie, 53(5), 1-17. DOI: https://doi.org/10.1007/s13592-022-00970-1

Puerta, F., Serrano, J., Sánchez, R.T., Ruiz, M.B., Álvarez, F.P., & Salcedo, M.H. (1990). Antifungal activity of selected products against Ascosphaera apis. In vitro studies. Revista Iberoamericana De Micologia, 7, 103-106.

Råberg, L., Graham, A.L., & Read, A.F. (2009). Decomposing health: tolerance and resistance to parasites in animals. Philos Trans R Soc Lond B Biol Sci. 364(1513):37–49. DOI: https://doi.org/10.1098/rstb.2008.0184

Råberg, L., Sim, D., Read, A.F. (2007). Disentangling genetic variation for resistance and tolerance to infectious diseases in animals. Science. 318(5851):812–814. DOI: https://doi.org/10.1126/science.1148526

Rodríguez-Dehaibes, S. R., Otero-Colina, G., Sedas, V. P., & Jiménez, J. A. V. (2005). Resistance to amitraz and flumethrin in Varroa destructor populations from Veracruz, Mexico. Journal of apicultural research, 44(3), 124-125. DOI: https://doi.org/10.1080/00218839.2005.11101162

Rosenkranz, P., Aumeier, P & Ziegelmann, B. (2010) . Biology and control of Varroa destructor. J Invertebr Pathol. 103:S96–S119. DOI: https://doi.org/10.1016/j.jip.2009.07.016

Roush, R. T., & McKenzie, J. A. (1987). Ecological genetics of insecticide and acaricide resistance. Annual review of entomology, 32(1), 361-380.

Ramsey, S. D., Ochoa, R., Bauchan, G., Gulbronson, C., Mowery, J. D., Cohen, A., Lim, D., Joklik, J., Cicero, J. M., Ellis, J. D., Hawthorne, D., & van Engelsdorp, D. (2019). Varroa destructor feeds primarily on honey bee fat body tissue and not hemolymph. Proceedings of the National Academy of Sciences of the United States of America, 116(5), 1792–1801. https://doi.org/10.1073/pnas.1818371116 DOI: https://doi.org/10.1073/pnas.1818371116

Reyes-Quintana, M., Espinosa-Montaño, L. G., Prieto-Merlos, D., Koleoglu, G., Petukhova, T., Correa-Benítez, A., & Guzman-Novoa, E. (2019). Impact of Varroa destructor and deformed wing virus on emergence, cellular immunity, wing integrity and survivorship of Africanized honey bees in Mexico. Journal of invertebrate pathology, 164, 43–48. https://doi.org/10.1016/j.jip.2019.04.009

Rosenkranz, P., & Garrido, C. (2004). Volatiles of the honey bee larva initiate oogenesis in the parasitic mite Varroa destructor. Chemoecology, 14(3-4). doi:10.1007/s00049-004-0278-0 DOI: https://doi.org/10.1007/s00049-004-0278-0

Richards, E., Jones, B., Bowman, A. (2011). Salivary secretions from the honeybee mite, Varroa destructor: effects on insect haemocytes and preliminary biochemical characterization. Parasitology, 138(05), 602–608. doi:10.1017/s0031182011000072 DOI: https://doi.org/10.1017/S0031182011000072

Rickli, M., Guerin, P.M., & Diehl, P.A. (1992). Palmitic acid released from honeybee worker larvae attracts the parasitic mite Varroa jacobsoni on a servosphere. Naturwissenschaften 79:320–322 DOI: https://doi.org/10.1007/BF01138711

Rickli, M., Diehl, P.A., & Guerin, P.M. (1994). Cuticle alkanes of honeybee larvae mediate arrestment of bee parasite Varroa jacobsoni. J Chem Ecol 20:2437–2453. DOI: https://doi.org/10.1007/BF02033212

Ritter, W. (1981). Varroa disease of the honeybee Apis mellifera. Bee world, 62(4), 141-153. DOI: https://doi.org/10.1080/0005772X.1981.11097838

Rehm, S.-M., & Ritter, W. (1989). Sequence of the sexes in the offspring of Varroa jacobsoni and the resulting consequences for the calculation of the developmental period. Apidologie, 20(4), 339–343. doi:10.1051/apido:19890406. DOI: https://doi.org/10.1051/apido:19890406

Roush, R. T., & McKenzie, J. A. (1987). Ecological Genetics of Insecticide and Acaricide Resistance. Annual Review of Entomology, 32(1), 361–380. doi:10.1146/annurev.en.32.010187. DOI: https://doi.org/10.1146/annurev.en.32.010187.002045

Russo, R.M., Liendo, M.C., Landi, L., Pietronave, H., Merke, J., Fain, H., Muntaabski, I., Palacio, M. A., Rodríguez, G. A., Lanzavecchia, S. B & Scannapieco, A. C. (2020). Grooming Behavior in Naturally Varroa-Resistant Apis mellifera Colonies From North-Central Argentina. Front. Ecol. Evol., 22 October 2020 Sec. Behavioral and Evolutionary Ecology. DOI: https://doi.org/10.3389/fevo.2020.590281

Reyes-Quintana, M., Espinosa-Montaño, L. G., Prieto-Merlos, D., Koleoglu, G., Petukhova, T., Correa-Benítez, A., & Guzman-Novoa, E. (2019). Impact of Varroa destructor and deformed wing virus on emergence, cellular immunity, wing integrity and survivorship of Africanized honey bees in Mexico. Journal of Invertebrate Pathology, 164, 43–48. doi:10.1016/j.jip.2019.04.009 DOI: https://doi.org/10.1016/j.jip.2019.04.009

Reyes, F., Vargas, J., Martos, A & Chura, J. (2020). Eficacia de cuatro acaricidas sobre el ácaro Varroa destructor. Anales Científicos 81 (1): 229-242. DOI: https://doi.org/10.21704/ac.v81i1.1633

Reyna Fuentes, J. H., Martínez González, J. C., Silva Contreras, A., & López Aguirre, D. (2022). Effect of three vegetable grinds against the Varroa destructor mite in colonies of Apis mellifera. Nova Scientia, 14(28). https://doi.org/10.21640/ns.v14i28.3019 DOI: https://doi.org/10.21640/ns.v14i28.3019

Ruffinengo, S., Eguaras, M., Floris, I., Faverin, C., Bailac, P & Ponzi, M. (2005). LD50 and Repellent Effects of Essential Oils from Argentinian Wild Plant Species on Varroa destructor, Journal of Economic Entomology, Volume 98, Issue 3, 1 June 2005, Pages 651–655, https://doi.org/10.1603/0022-0493-98.3.651. DOI: https://doi.org/10.1603/0022-0493-98.3.651

Sakai, A. K., Allendorf, F. W., Holt, J. S., Lodge, D. M., Molofsky, J., With, K. A & Weller, S. G. (2001). The Population Biology of Invasive Species. Annual Review of Ecology and Systematics, 32(1), 305–332. doi:10.1146/annurev.ecolsys.32.08. DOI: https://doi.org/10.1146/annurev.ecolsys.32.081501.114037

Salina, M.D., Genchi Garcia, M.L.,Bais, B.B., Bravi, M.E., Brasesco, M.C., et al. (2021). Viruses that affect Argentinian honey bees (Apis mellifera); Springer Wien; Archives of Virology; 166; 6; 8-3-2021; 1533-1545. DOI: https://doi.org/10.1007/s00705-021-05000-6

Sammataro, D., Gerson, U., Needham & G. Parsitic mites of honey bees: Life History, Implications, and Impact. Annu Rev Entomol. 2000;45:519–548. DOI: https://doi.org/10.1146/annurev.ento.45.1.519

Seeley, T.D. & Smith, M.L. (2015). Crowding honey bee colonies in apiaries raises their vulnerability to the deadly ectoparasite Varroa destructor. Apidologie 46: 716–727. https://doi.org/10.1007/ s13592-015-0361-2. DOI: https://doi.org/10.1007/s13592-015-0361-2

Schmid-Hempel P. (2011). Evolutionary parasitology: the integrated study of infections, immunology, ecology, and genetics. Oxford University Press, England; p. 223.

Schneider, S., DeGrandi-Hoffman, G., & Smith, D. R. (2004). The African honey bee: factors contributing to a successful biological invasion. Annual Reviews in Entomology, 49(1), 351-376. DOI: https://doi.org/10.1146/annurev.ento.49.061802.123359

Sheppard,W. S., Rinderer, T E., Garnery, L., & Shimanuki, H. (1999). Hachiro Shimanuki Analysis of Africanized honey bee mitochondrial DNA reveals further diversity of origin Animal Genetics. Genet. Mol. Biol. 22 (1) • Mar 1999 • https://doi.org/10.1590/S1415-47571999000100015

Taylor Jr, O. R., & Rowell, G. A. (1988). Drone abundance, queen flight distance, and the neutral mating model for the honey bee, Apis mellifera. Drone abundance, queen flight distance, and the neutral mating model for the honey bee, Apis mellifera., 173-183.

Traynor, KS., Mondet, F., de Miranda, J. R, Techer, M., Kowallik, V., Oddie, M.A.Y, Chantawannakul, P & McAfee, A. (2020). Varroa destructor: A Complex Parasite, Crippling Honey Bees Worldwide. Tendencias Parasitol. 36 :592–606. doi: 10.1016/j.pt.2020.04.004. DOI: https://doi.org/10.1016/j.pt.2020.04.004

Tibatá, V.M., Sanchez, A., Palmer-Young, E., Junca, H., Solarte, V. M., Madella, S., et al. (2021). Africanized honey bees in Colombia exhibit high prevalence but low level of infestation of Varroa mites and low prevalence of pathogenic viruses. PLoS ONE 16(5): e0244906. https://doi.org/10.1371/journal.pone.0244906 DOI: https://doi.org/10.1371/journal.pone.0244906

Treviño Ortiz, N. S. (2020). Evaluación del efecto de extractos de Lonchocarpus punctatus, Critonia aromatisans, Cymbopogon citratus y Plectranthus amboinicus sobre Varroa destructor e inocuidad en su hospedero Apis mellifera y levaduras asociadas. Centro de Investigación Científica de Yucatán, A.C. Posgrado en Ciencias Biológicas. Mérida, Yucatán, México.

Thompson, H.M., Brown, M.A., Ball, R.F., Bew, M.H. (2002). First report of Varroa destructor resistance to pyrethroids in the UK. Apidologie. 33(4):357–366. DOI: https://doi.org/10.1051/apido:2002027

Topal, E., Cornea-Cipcigan, M., Tunca, R. I., Kösoğlu, M., & Mărgăoan, R. (2020). The Use of Medicinal Aromatic Plants Against Bee Diseases and Pests. 12. 5-11. 10.51458/BSTD.2021.2. DOI: https://doi.org/10.51458/BSTD.2021.2

Vandame, R., & Palacio, M.A. (2010) Preserved honey bee health in Latin America: a fragile equilibrium due to low-intensity agriculture and beekeeping? Apidologie 41(3), 243–255 DOI: https://doi.org/10.1051/apido/2010025

Villa, J.D., Danka, R.G., & Harris, J.W. (2009). Simplified methods of evaluating colonies for levels of Varroa sensitive hygiene (VSH). J. Apic. Res./Bee World 48: 162– 167. DOI: https://doi.org/10.3896/IBRA.1.48.3.03

Vilarem, C., Piou, V., Vogelweith, F., & Vétillard, A. (2021). Varroa destructor from the Laboratory to the Field: Control, Biocontrol and IPM Perspectives-A Review. Insects, 12(9), 800. https://doi.org/10.3390/insects12090800. DOI: https://doi.org/10.3390/insects12090800

Wharton, R.H., Roulston, W.J., Utech, K.B.W., & Kerr, J.D. (1970). Assessment of the efficiency of acaricides and their mode of application against the cattle tick (Boophilus microplus). Australian Journal of Agricultural Research, 21(6), 985. doi:10.1071/ar9700985 DOI: https://doi.org/10.1071/AR9700985

Wieczorek, P., Frąckowiak, P., & Obrępalska-Stęplowska, A. (2020). Evaluation of the expression stability of reference genes in Apis mellifera under pyrethroid treatment. Scientific Reports, 10(1). doi:10.1038/s41598-020-73125-w. DOI: https://doi.org/10.1038/s41598-020-73125-w

Winston, M. L. (1992). The biology and management of Africanized honey bees. Annual review of entomology, 37(1), 173-193. DOI: https://doi.org/10.1146/annurev.en.37.010192.001133

Yang, X., & Cox-Foster, D.L. (2007). Effects of parasitization by Varroa destructor on survivorship and physiological traits of Apis mellifera in correlation with viral incidence and microbial challenge. Parasitology 134(3), 405–412. DOI: https://doi.org/10.1017/S0031182006000710

Yue, C., & Genersch. (2005). RT-PCR analysis of deformed wing virus in honeybees (Apis mellifera) and mites (Varroa destructor). J. Gen. Virol., 86, 3419–3424. DOI: https://doi.org/10.1099/vir.0.81401-0

Descargas

Publicado

2023-01-11

Cómo citar

Fuentes, G., Iglesias, A., Mitton, G., Ramos, F., Brasesco, C., & Maggi, M. (2023). Varroa destructor en Latinoamérica: una introducción a la biología, ecología y control en la región. EUNK Revista Científica De Abejas Y Apicultores, 1(2), 12–29. https://doi.org/10.52559/eunk.v1i2.30

Número

Sección

Artículos Especializados

Categorías

Datos de los fondos

Artículos más leídos del mismo autor/a